miércoles, 25 de abril de 2012

Didáctica de ciencias naturales


Primero básico: Las hojas de las plantas

Las hojas son las áreas fotosintéticas de la planta.
Las células fotosintéticas de las hojas son células parenquimáticas que forman dos tipos de tejidos: parénquima en empalizada, constituido por células alargadas y densamente empaquetadas ubicadas justo por debajo de la superficie superior de la hoja, y parénquima esponjoso, que consiste en células de contorno irregular situadas en el interior de la hoja y con grandes espacios intercelulares.
Estos espacios están llenos de gases, que incluyen vapor de agua, oxígeno y dióxido de carbono. La mayor parte de la fotosíntesis ocurre en las células en empalizada, que están especializadas en la captación de la luz. (Ver fotografía asociada)

El parénquima en empalizada y el parénquima esponjoso constituyen el tejido fundamental de la hoja, conocido como mesófilo. El mesófilo está envuelto casi herméticamente por las células epidérmicas, que secretan una sustancia cérea llamada cutina que forma una cubierta, la cutícula, sobre la superficie externa de la epidermis. Las células epidérmicas y la cutícula son transparentes, lo que permite que la luz las atraviese y penetre en las células fotosintéticas. (Ver fotografía asociada)

Las sustancias entran y salen de las hojas a través de dos estructuras completamente diferentes: los haces vasculares y los estomas. El agua y los minerales disueltos son transportados a las hojas, y los productos de la fotosíntesis son transportados fuera de ellas, por medio de los haces vasculares. Los haces vasculares atraviesan los pecíolos y se continúan con los tejidos vasculares del tallo y la raíz.

En la parte superior, una cutícula muy gruesa cubre la epidermis múltiple, así llamada porque consta de cuatro capas de células. El estoma se encuentra dentro de una cripta estomática, tapizada con pelos epidérmicos.

Las hojas presentan una variedad de formas y tamaños, que van desde frondes grandes a escamas diminutas. Estas diferencias en la morfología y tamaño guardan una estrecha relación con los ambientes en los cuales vive la planta. (Ver fotografía asociada)

a) Espinas de un nopal, o chumbera, cacto gigante fotografiado en las Islas Galápagos.

b) Hojas suculentas adaptadas al almacenamiento de agua (Sedum).

c) Zarcillo de una planta de guisante. En la planta de guisante, que tiene hojas compuestas, sólo los folíolos individuales se modifican como zarcillos; otros folíolos de hojas compuestas son aplanados, lo que proporciona una superficie amplia para la fotosíntesis.

              Los receptores sensoriales, la piel

Los receptores sensoriales son muchos y diversos. La mayoría de los animales, incluido el ser humano, tiene mecanorreceptores (que responden al tacto, posición del cuerpo y audición), quimiorreceptores (que responden al sabor y al olor), fotorreceptores (que responden a la luz), receptores de temperatura y receptores de la sensación reconocida como dolor. Algunos animales, aunque aparentemente no Homo sapiens, tienen también electrorreceptores y magnetorreceptores.

Desde el punto de vista funcional, los receptores sensoriales pueden ser clasificados en interorreceptores, propiorreceptores y exterorreceptores. Los interorreceptores incluyen a los mecanorreceptores sensibles a la presión sanguínea, los quimiorreceptores sensibles a las concentraciones de O2, CO2 y H+ y los sensores de temperatura del hipotálamo son también interorreceptores.

Habitualmente, no somos conscientes de las señales de estos receptores. Sin embargo, en algunas ocasiones, las señales resultan en percepciones como dolor, hambre, sed, náuseas, o la sensación, producida por receptores de tensión, de tener la vejiga o el intestino llenos.

Los propiorreceptores informan acerca de la orientación del cuerpo en el espacio y de la posición de los miembros. Los canales semicirculares del oído son los órganos propioceptores más importantes en muchos vertebrados y desempeñan una función semejante a la de los estatocistos de la medusa.

Los receptores sensoriales más familiares son los exterorreceptores, que proveen información acerca del ambiente externo.
Los receptores más simples son terminales nerviosas libres, como los receptores de dolor y temperatura. Algo más complejas son las combinaciones de terminales nerviosas libres con un pelo y su folículo. Cada uno de estos pequeños órganos es un mecanorreceptor exquisitamente sensible.

Las terminales nerviosas libres son fundamentalmente receptores de dolor y de temperatura. Los receptores cutáneos mejor conocidos son los corpúsculos de Pacini.La terminal nerviosa especializada de una sola fibra mielínica está encapsulada por el corpúsculo, que se compone de muchas capas concéntricas de tejido conectivo. La presión sobre estas capas externas estimula la descarga de un potencial de acción en su terminal nerviosa. Las células de Merkel y los corpúsculos de Meissner también responden al tacto, como lo hacen las terminales nerviosas que rodean a los folículos del pelo.

                    Fuerza de gravedad


¿Qué es la fuerza de gravedad?

Isaac Newton fue uno de los grandes físicos de la historia. Sus tres leyes del movimiento fueron un aporte trascendental y la base de la física dinámica.
Isaac Newton fue uno de los grandes físicos de la historia. Sus tres leyes del movimiento fueron un aporte trascendental y la base de la física dinámica.
Isaac Newton, físico del siglo XVII, describió la ley de gravitación universal. Newton fue el primero en demostrar que las leyes naturales, las que gobiernan el movimiento en la Tierra son las mismas que gobiernan el movimiento de los cuerpos celestes. Es, a menudo, calificado como el científico más grande de todos los tiempos.

Newton describe la fuerza de gravedad como el fenómeno por el cual todos los objetos de una masa determinada se atraen entro ellos.
Las teorías del científico Galileo Galilei fueron la base para los planteamientos de Newton. Galileo introdujo el concepto de inercia, que se define como una tendencia que posee todo cuerpo en movimiento a continuar con ese mismo movimiento.
Todo cuerpo en la Tierra en su estado natural está en reposo, a menos que una fuerza externa lo ponga en movimiento. En cambio, los planetas y la Luna están en constante movimiento, por lo tanto, debe existir necesariamente una fuerza que los haga mantenerse así. Es aquí donde comienza el trabajo de Newton y elabora las tres leyes del movimiento.
Newton afirma que un cuerpo en reposo o en movimiento recto uniforme permanecerá en esa condición hasta que una fuerza externa los haga cambiar (primera ley: ley de inercia.). Este es el caso de los planetas. Los planetas están siendo atraídos constantemente por el Sol, de la misma manera que una manzana es atraída hacia el centro de la Tierra al ser desprendida de la rama de su árbol. Por lo tanto la fuerza de gravedad no es exclusiva para el planeta Tierra, todos los cuerpos la ejercen, pero depende de la masa de cada uno. Como el Sol posee una gran cantidad de masa, es capaz de mantener a todo el sistema solar en órbitas en torno a él.
Según los resultados de un experimento de Galileo, todos los cuerpos caen con la misma aceleración independiente de sus masas.
ley de gravitación universal. Newton fue el primero en demostrar que las leyes naturales, las que gobiernan el movimiento en la Tierra son las mismas que gobiernan el movimiento de los cuerpos celestes. Es, a menudo, calificado como el científico más grande de todos los tiempos.. Esta atracción dependerá de la masa del objeto en cuestión. A mayor más masa, mayor será la fuerza de atracción.Según cuenta una leyenda, Galileo subió a la torre inclinada de Pisa y arrojó dos objetos de masa diferente para demostrar que el tiempo de caída libre era el mismo para ambos.
Esto complementándolo con la segunda ley de Newton (Segunda ley o principio fundamental de la dinámica: la fuerza que atrae a los objetos es proporcional a sus masa), lleva a concluir que es la fuerza de gravedad la que interviene sobre los cuerpos en caída libre y la aceleración es la aceleración de gravedad que se calcula con la siguiente fórmula: g=GM/R2.
es una constante conocida como la constante de Newton.
M dice relación con la masa del cuerpo que provoca la aceleración.
R es la distancia que hay entre los dos cuerpos; el que atrae, y el que es atraído.
De esta manera se obtiene la tercera ley de Newton que mide exactamente la intensidad de la fuerza: F= (GmM)/R2. (Tercera ley o principio de acción-reacción: cuando un cuerpo ejerce una fuerza sobre otro, éste ejerce sobre el primero una fuerza igual y de sentido opuesto.)
Con esta fórmula Newton pudo calcular que la fuerza ejercida por la Tierra (M) sobre la luna (m) es mucho mayor que la ejercida por la Tierra sobre una manzana. Y la fuerza entre dos manzanas es casi nula. Esto significa que todo depende de la masa de los cuerpos que se están tratando.

Isaac Newton

Isaac Newton (1642-1727) fue un científico y matemático inglés. En su libro Principia Mathematica recopiló los hallazgos de Galileo en tres leyes del movimiento.
* La primera enuncia el principio de inercia: un cuerpo en reposo permanece en reposo y un cuerpo en movimiento permanece en movimiento y a una velocidad constante siempre que no intervengan fuerzas externas.
* La segunda define una fuerza en función de su masa y de su aceleración, y esto constituye la primera distinción clara entre la masa de un cuerpo (representada por su resistencia a la aceleración; con otras palabras: la cantidad de inercia que poseía) y supeso (representado por la cantidad de fuerza gravitatoria que existe entre el mismo y otro cuerpo, que generalmente era la Tierra).
* La tercera ley establece que para cada acción existe una reacción igual y de sentido contrario. Dicha ley está hoy de actualidad, ya que rige el comportamiento de los cohetes.

Los estados de la materia

La química actúa sobre la materia, que es todo aquello que nos rodea, ocupa un lugar y un espacio en el universo, y que somos capaces de identificar y conocer.
ÍNDICE DE TEMAS:
  1. Sólido, líquido y gaseoso
  2. Cambios de estado de la materia
  3. Los estados del agua

Sólido, líquido y gaseoso

La materia está presente en todo el universo en diferentes estados. Algunos de ellos, incluso, recién se están investigando.
La materia está presente en todo el universo en diferentes estados. Algunos de ellos, incluso, recién se están investigando.
La materia normalmente presenta tres estados o formas: sólidalíquida o gaseosa. Sin embargo, existe un cuarto estado, denominado estado plasma, el cual corresponde a un conjunto de partículas gaseosas eléctricamente cargadas (iones), con cantidades aproximadamente iguales de iones positivos y negativos, es decir, globalmente neutro.
El estado sólido se caracteriza por su resistencia a cualquier cambio de forma, lo que se debe a la fuerte atracción que hay entre las moléculas que lo constituyen; es decir, las moléculas están muy cerca unas de otras.
No todos los sólidos son iguales, ya que poseen propiedades específicas que los hacen ser diferentes. Estas propiedades son:
- Elasticidad
- Dureza
- Fragilidad
Líquido
En el estado líquido, las moléculas pueden moverse libremente unas respecto de otras, ya que están un poco alejadas entre ellas. Los líquidos, sin embargo, todavía presentan una atracción molecular suficientemente firme como para resistirse a las fuerzas que tienden a cambiar su volumen.
No todos líquidos son iguales. Poseen propiedades específicas que los hacen ser diferentes.
- Volatilidad: nos referimos a la capacidad del líquido para evaporarse. Por ejemplo, si dejas un perfume abierto, podrás ver cómo con el paso del tiempo, disminuye el volumen del líquido.
- Viscosidad: nos referimos a la facilidad del líquido para esparcirse. No es lo mismo derramar aceite que agua, ésta última es menos viscosa, ya que fluye con mayor facilidad.
Gaseoso
En el estado gaseoso, las moléculas están muy dispersas y se mueven libremente, sin ofrecer ninguna oposición a las modificaciones en su forma y muy poca a los cambios de volumen. Como resultado, un gas que no está encerrado tiende a difundirse indefinidamente, aumentando su volumen y disminuyendo su densidad.
La mayoría de las sustancias son sólidas a temperaturas bajas, líquidas a temperaturas medias y gaseosas a temperaturas altas; pero los estados no siempre están claramente diferenciados. Puede ocurrir que se produzca una coexistencia de fases cuando una materia está cambiando de estado; es decir, en un momento determinado se pueden apreciar dos estados al mismo tiempo. Por ejemplo, cuando cierta cantidad de agua llega a los 100ºC (en estado líquido) se evapora, es decir, alcanza el estado gaseoso; pero aquellas moléculas que todavía están bajo los 100ºC, se mantienen en estado líquido.
Plasma
Existe un cuarto estado de la materia llamado plasma, que se forman bajo temperaturas y presiones extremadamente altas, haciendo que los impactos entre los electrones sean muy violentos, separándose del núcleo y dejando sólo átomos dispersos.
El plasma, es así, una mezcla de núcleos positivos y electrones libres, que tiene la capacidad de conducir electricidad.
Un ejemplo de plasma presente en nuestro universo es el Sol.

No hay comentarios:

Publicar un comentario